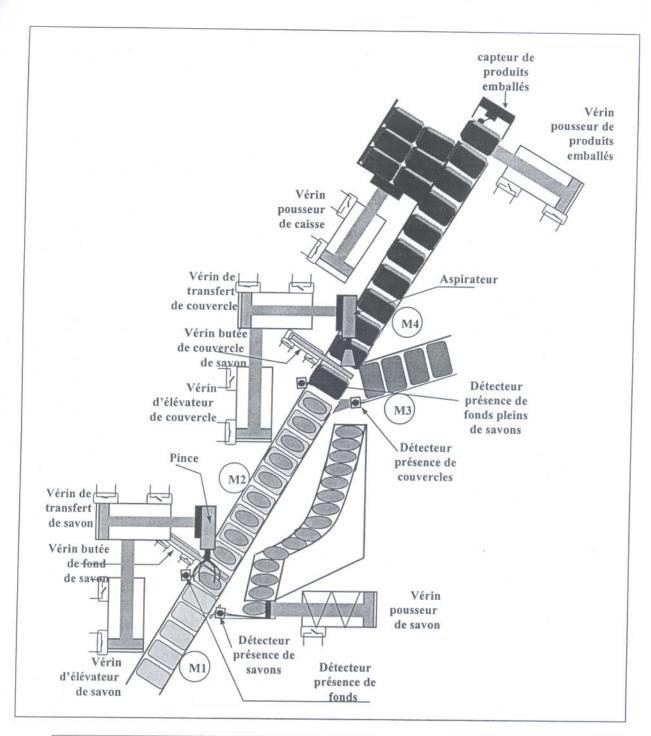
مباراة للتعاقد على بعض المهام لدى مصلحة الابحاث العلمية الزراعية

المدة: ساعتان

لمهام فني ميكانيكي مسابقة في التحكم اللآلي

Traiter les questions suivantes :

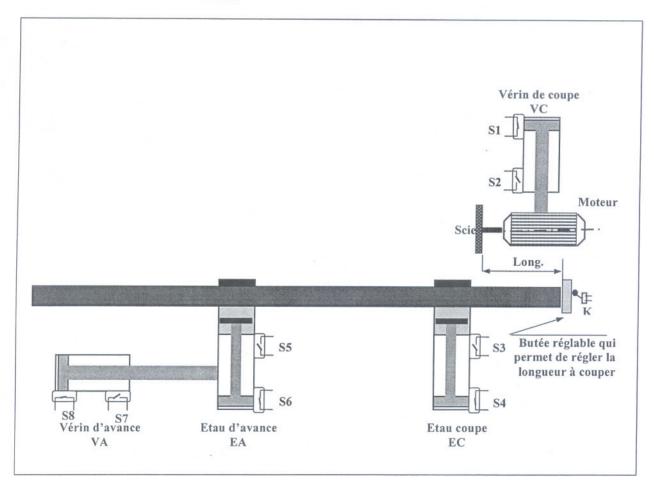

1. Traitement d'emballage du savon

Le système d'emballer des pièces de savon dans des boites et l'emmagasinage des boites de savon dans des caisses comprend :

- Un vérin d'élévateur des pièces de savon,
- Un vérin de transfert des pièces de savon,
- Un aspirateur de pièces de savon,
- Un vérin d'élévateur de couvercles de boites de savon,
- Un vérin de transfert de couvercles de boites de savon,
- Une pince pour enlever les couvercles de boites de savon,
- Un vérin pour pousser les produits emballés de savon,
- Un vérin pour pousser les caisses de boites de savon,
- Un vérin pour pousser les pièces de savon,
- Un vérin pour buter les fonds des boites de savon,
- Un vérin pour buter les couvercles de savon.

Des capteurs et actionneurs qui sont définis dans le tableau suivant :

Désignation	Les capteurs
Présence de savon	PS
Déplacement de savon	DS
Transfert avancé de savons	TAS
Transfert reculé de savons	TRS
Elévateur en haut de savons	EHS
Elévateur en bas de savons	EBS
Présence de fond de couvercles	PFC
Butée avancée de fond	BAF
Butée reculée de fond	BRF
Présence de fond de couvercles pleins de	PFCS
savon	
Présence de couvercles	PC
Butée avancée de fonds pleins de savon	BAFS
Butée reculée de fonds pleins de savon	BRFS
Transfert avancé de couvercles	TAC
Transfert reculé de couvercles	TRC
Elévateur en haut de couvercles	EHC
Elévateur en bas de couvercles	EBC
Présence de produit terminé	PPE
Pousseur de produit terminé avancé	PPA
Pousseur de produit terminé reculé	PPR
Pousseur carton avancé	PCA
Pousseur de carton reculé	PCR


Désignation	Les actionneurs
Vérin de transfert avancé des savons	VTS+
Vérin de transfert reculé des savons	VTS-
Vérin d'élévateur en haut des savons	VES+
Vérin d'élévateur en bas des savons	VES-
Vérin pousseur des savons	VPS
Fermeture de pinces	FP
Vérin d'avance butée de fond	B1+
Vérin de recul buté de fond	B1-
Vérin d'avance butée de fond plein de savon	B2+
Vérin de recul butée de fond plein de savon	B2-
Vérin de transfert avancé de couvercles	VTC+

Vérin de transfert recul des couvercles	VTC-
Vérin d'élévateur en haut des couvercles	VEC+
Vérin d'élévateur en bas des couvercles	VEC-
Aspirateur	AS
Vérin pousseur produit terminé avancé	VPPT+
Vérin pousseur produit terminé reculé	VPPT-
Vérin pousseur carton avancé	VPC+
Vérin pousseur carton reculé	VPC-
Moteur tapis 1	M1
Moteur tapis 2	M2
Moteur tapis 3	M3
Moteur tapis 4	M4

Etablir le GRAFCET de point de vue système de la machine ci-dessus

2. Sciages des barres

Scier des barres métalliques de longueur inférieure à 6 mètres et de section $100 \times 100\,\mathrm{mm}$ au maximum.

Le système comprend :

- Un moteur de sciage,
- Un vérin de sciage pour avancer le moteur de sciage,
- Un vérin d'avance pour avancer la barre métallique,
- Un étau d'avance,
- Un étau de coupe,
- Des actionneurs et des capteurs qui sont présentés dans le tableau suivant :

Désignation	Capteurs
Départ cycle	Dcy
Reculer vérin de sciage	S1
Avancer vérin de sciage	S2
Serrer étau de coupe	S3
Ouvrir étau de coupe	S4
Serrer étau d'avance	S5
Ouvrir étau d'avance	S6
Avancer vérin d'avance	S7
Reculer vérin d'avance	S8
Capteur de butée	K
Acquitter	Acq.

Désignation	Actionneurs	
Avancer Vérin d'avance	V.A+	
Reculer vérin d'avance	V.A-	
Serrer vérin étau d'avance	V.EA+	
Ouvrir vérin étau d'avance	V.EA-	
Serrer vérin étau de coupe	V.EC+	
Ouvrir étau de coupe	V.EC-	
Avancer vérin de coupe	V.C+	
Reculer vérin de coupe	V.C-	
Moteur de sciage	M.SC	

Etablir le GRAFCET de point de vue système de la machine ci-dessus.

- 3. Définir les termes suivants :
 - 1. Les macro-étapes
 - 2. les transitions
 - 3. le GRAFCET séquentiel
- 4. Décrire les systèmes manuels, mécanisés et automatisés.

بيروت، في٢٠١٠/١١/٠٢

اللجنة الفاحصة

مباراة للتعاقد على بعض المهام لدى مصلحة الابحاث العلمية الزراعية

المدة: ساعتان

لمهام فني ميكانيكي مسابقة في الالآت الحرارية / محركات

Traiter les questions suivantes :

- 1.1. Décrire le cycle à 4 temps d'un moteur Diesel.
- 1.2. Tracer les diagrammes théorique et pratique de ce cycle.
- 1.3. Donner les causes des différences entre ces deux diagrammes.
- 2.1. Expliquer en détail, les organes mécaniques suivants :
 - Culasse
 - Piston
 - Soupape
- 2.2. Préciser les différences entre une soupape d'admission et une soupape d'échappement.
- 3.1. Quels sont les avantages et les inconvénients d'un moteur Diesel par rapport à un moteur à essence?
- 3.2. Pourquoi le moteur Diesel est plus utilisé qu'un moteur à essence dans les domaines industriels ?
- 4.1. Quelles sont les différentes puissances qui caractérisent un moteur?
- 4.2. Définir chaque type de puissance et indiquer la puissance la plus importante pour un mécanicien.
- 4.3. Déduire de ces puissances le rendement du moteur.
- 5.1. Schématiser le circuit d'alimentation d'un moteur Diesel et indiquer ses différents éléments.
- 5.2. Décrire, avec schéma, et indiquer le principe de fonctionnement d'une pompe d'alimentation pour un moteur Diesel.

بيروت، في ٢٠١٠/١١/٠٢

مباراة للتعاقد على بعض المهام لدى مصلحة الابحاث العلمية الزراعية

المدة: ساعتان

لمهام فني ميكانيكي مسابقة في الالآت التوربينية والكهربانية

I. Turbines

1. Une pompe centrifuge est caractérisée par :

 $\begin{array}{lll} Q = 10 \ 1/\ s & H_p = 50 \ m & n = 1200 \ tr \ / \ min. \\ \eta_h = 0.86 & \eta_v = 0.94 & \eta_m = 0.96 \\ D_2 = 20 \ cm & D_1 = 12 \ cm & \beta_{a1} = 22^\circ \end{array}$

On demande de calculer:

- 1. La puissance utile,
- 2. La puissance absorbée,
- 3. Le couple d'entraînement,
- 4. Le débit théorique,
- 5. Le débit de fuites en 1 / min.,
- 6. Le nombre d'aubes,
- 7. La hauteur théorique H_{th},
- 8. La hauteur théorique H_{th∞},

N.B.: Prendre $\gamma = 10^4 \text{ N} / \text{m}^3$.

I. Représenter schématiquement une pompe centrifuge et indiquer le rôle de chaque élément.

II. Machines électriques

1. Un moteur asynchrone triphasé a 12 pôles et tourne à la vitesse de 480 tr/min. Il donne une puissance utile de 200 KW sous une tension de 380 V à 50 Hz. A cette charge, son rendement est 0.87, son facteur de puissance est 0.8 et ses pertes fer sont 6500 W.

On demande de calculer:

- 1. La vitesse de synchronisme et le glissement.
- 2. La puissance et l'intensité du courant absorbée par le moteur.
- 3. Les pertes joules statoriques sachant que la résistance entre bornes $R_s = 0.025 \ \Omega$.
- 4. La puissance transmise au rotor et les pertes joules rotoriques.
- 5. Le couple utile.
- 2. Décrire avec schéma, un transformateur monophasé et expliquer son principe de fonctionnement.